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The problem of interest

The nonlinear program (NLP):

minimize
a

F (a) = f(a, u(a))

subject to C(a) = C(a, u(a)) ≥ 0

where S(a, u(a) = 0 is the governing PDE.

Terminology:

design variables: a ∈ X, finite- or∞-dimensional

state variables: u ∈ U , ∞-dimensional

The computational cost of optimization is determined by the discretization of the governing

differential equations.

A finer discretization means greater accuracy, but more work.
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Another type of NLP related to discretized problems

The NLP:
minimize

u
f(u)

subject to c(u) ≥ 0

Example. Minimize the area of a surface (graph) with prescribed boundary.

minimize
u

∫
Ω

(1 + ‖ ∇u ‖2
)
1/2

dx

subject to u = φ on ∂Ω

The stationarity condition is the minimal surface equation.
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This talk

1. The class of nonlinear programs of interest

2. A multigrid method

3. Some model problems and numerical results

4. Why multigrid might work:

• The nature of the reduced Hessian

5. Interaction with truncated conjugate gradients

We assume here that the design variable a is a discretized quantity ah.
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Optimization of systems governed by differential equations

General theme: The governing PDE and the NLP interact in many interesting ways, both

analytically and computationally.

This talk: An optimization problem may be better suited to a multigrid approach than its

governing p.d.e.

• MG/Opt

Model problems for the multigrid optimization of systems governed by differential

equations, RML and S. G. Nash, submitted to SIAM J. on Scientific Computing.

A Multigrid Approach to the Optimization of Systems Governed by Differential

Equations, RML and S. G. Nash, AIAA paper 2000-4890.

• For a related approach, see

Optimization with variable-fidelity models applied to wing design, N. M. Alexandrov,

RML, C. R. Gumbert, L. L. Green, P. A. Newman, J. of Aircraft, Nov–Dec 2001.
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MG/Opt overview

The MG/Opt multigrid approach to the nonlinear program:

• Multigrid: recursively use coarse grid problems to generate search directions for finer

grid problems

• Use a line search on fine grid

• Convergence can be guaranteed

• Inspired by multigrid for elliptic p.d.e. and by globalization techniques in nonlinear

programming

• Applicable when S(a, u) = 0 is not especially amenable to multigrid (e.g., hyperbolic

p.d.e.)

• Optimization problem better suited to multigrid than underlying differential equation
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Multigrid for linear elliptic p.d.e.

For a linear system Ax = b

• If on coarsest grid, solve and return

• Apply k1 iterations of an iterative method

• Form residual r = b− Ax
• Solve (recursively) coarse-grid version of Ae = r, and update solution to fine grid

• Set x← x+ e

• Apply k2 iterations of an iterative method
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Properties of linear multigrid

• Storage: about 2 times the storage of the fine-grid problem

(N +N/2 + . . .)

• Computation: 1 MG iteration = about 4 fine-grid iterations

• Convergence: on “appropriate” problems, no. of MG iterations is independent of the

fine-grid resolution

• Linear convergence rate
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Multigrid optimization (MG/Opt) algorithm

• Originally developed for unconstrained variational problems

minimize
u

fh(u)

• Here, the p.d.e. Sh(a, u) = 0 is solved for uh(a) (given a)

• In many cases, no. of design variables a is fixed

– semi-coarsening in states uh only

Here we assume a is a discretized quantity ah.

• Motivated by full approximation scheme applied to optimality conditions:

∇afh(a, uh(a)) = 0

• Alternatively, one can motivate the algorithm via NLP considerations
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MG/Opt algorithm

Notation

• h: fine grid mesh, H: coarse grid mesh

• IHh : downdate, IhH: update, of a

• uh: fine-grid vector, uH: coarse-grid vector

• Fh: fine-grid objective function

Fh(ah) = f(ah, uh(ah))

• FH: coarse-grid objective function

• gh(a): fine-grid gradient

• gH(a): coarse-grid gradient

• g1 = g(a1, u1(a1)), etc.
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MG/Opt algorithm

1. If coarsest grid, solve minimize
a

fh(a, uh(a)); else:

2. partially minimize Fh(a) to get a1

3. set ā1 = IHh a1

4. compute v = ḡ1 − IHh g1

5. recursively minimize FH(a)−vTa (with initial guess: ā1, result: ā2) subject to bound

constraints on the solution (used to guarantee convergence)

6. compute e2 = IhH(ā2 − ā1)

7. line search: a2 ← a1 + αe2

8. partially minimize Fh(a) to get a3
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User requirements

• Subroutine to solve S(a, u) = 0 for u given a

• Subroutine to evaluate Fh(a) and ∇aFh(a) for any grid h

• Subroutines to implement downdate IhH and update IHh operators

– Should satisfy IhH = const× (IHh )T (standard)
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∇2F (a) as a reduced Hessian

Formally, ∇2F (a) is the reduced Hessian associated with the formulation

minimize
(a,u)

f(a, u)

subject to S(a, u) = 0

Let W be the following basis for the nullspace of the linearized constraints:

[ Sa Su ] W = [ Sa Su ]

(
I

−S−1
u Sa

)
= 0.

Define the Lagrangian L(a, u;λ) = f(a, u) + 〈λ, S(a, u)〉.

Then

∇2
F (a) = W

T
(
∇2

(a,u)L((a, u(a);λ)
)
W.

Earlier work Multigrid MG/Opt Reduced Hessians Dirichlet to Neumann map I
Advection TCG Generality? Dirichlet to Neumann map II Summary



∇2F (a) in detail

Let

∇2
(a,u)L((a, u;λ) = ∇2

(a,u)f(a, u) +∇2
(a,u)S(a, u)λ =

(
Laa Lau
Lua Luu

)
.

Then

∇2
F = S

T
a S
−T
u LuuS

−1
u Sa + LauS

−1
u Sa + S

T
a S
−T
u Lua + Laa.
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Model Problem: Dirichlet to Neumann map

Minimize ∫ π

0

[
∂u

∂n
(x1, 0)− φ(x1)

]2

dx1

where S = { (x1, x2) | 0 ≤ x1 ≤ π, 0 ≤ x2 ≤ 1 }

Governing BVP:
∆u = 0 on the square S,

u
∣∣∣
Γ

= a(x1), Γ = lower edge of S

u
∣∣∣
∂S\Γ

= 0

Earlier work Multigrid MG/Opt Reduced Hessians Dirichlet to Neumann map I
Advection TCG Generality? Dirichlet to Neumann map II Summary



Uniform grids (1-d in a and 2-d in u): 128, 64, 32, 16
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Model problem: advection

Governing equation: linear advection (hyperbolic):

ut + ux = 0, 0 ≤ t ≤ T
u(x, 0) = a(x)

Objective: minimize

F (a) =
1

2

∫ T

0

∫
|u(x, t)− φ(x, t) |2 + | ∂xu(x, t)− ∂xφ(x, t) |2 dx dt.
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The continuous Hessian

The Hessian is given by

∇2
F · v = −v′′(x) + v(x).

This looks ideal for multigrid! but. . .

∇2
Fh = S

T
a,hS

−T
u,hLuu,hS

−1
u,hSa,h + S

T
a,hS

−T
u,hLua,h + Lau,hS

−1
u,hSa,h + Laa,h,

so it’s not the case that

∇2
FH = I

h
H ∇

2
Fh I

H
h .

The situation is more complicated than multigrid applied to equations.

Still, for many problems, we can show that the high-frequency asymptotics are the same

for ∇2FH and IhH ∇
2Fh I

H
h .

For the model problems, we can compute ∇2Fh directly.
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The discrete Hessian

Forward-time, backwards-space discretization:

un+1
m − unm

k
+
unm − u

n
m−1

h
= 0; k = ∆t, h = ∆x

The discrete Hessian is most simply described in terms of the spatial Fourier transform.

If ∆t = ∆x (the stability limit), then

( ̂∇2Fh · v)(ω) = T

1 +
4 sin2 h

ω

2
h2

 v̂(ω) ≈ T (1 + ω
2
)v̂(ω).

The discrete Hessian looks like an elliptic operator.

Now the analysis begins to resemble classical multigrid.
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Uniform grids (1-d in a and 2-d in u): 1024, 512, 256, 128, 64, 32
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Truncated conjugate gradients

In t.c.g., we compute steps by applying c.g. to

minimize 1
2〈s, ∇

2F s〉+ 〈∇F, s〉
subject to ‖ s ‖ ≤ δ.

We can use the way ∇2F affects low and high frequencies matters to make this more

efficient.

Earlier work Multigrid MG/Opt Reduced Hessians Dirichlet to Neumann map I
Advection TCG Generality? Dirichlet to Neumann map II Summary



Why does c.g. stall?

Consider unpreconditioned c.g. applied to Poisson’s equation, ∆u = q, or, equivalently,

minimize
1

2

∫
∇u · ∇u− qu.

At iteration k, we’ve minimized over the Krylov subspace

“span
{
q, ∆q, ∆2q, ∆3q, . . . , ∆kq

}
”

But the Krylov vectors represent increasingly oscillatory functions, while the solution is

smoother than q because ∆ is elliptic!

In the discretized problem, c.g. quickly minimizes the quadratic over the span of functions

that are increasingly oscillatory relative to the level of discretization.

Multigrid switches to coarser levels of discretization to take advantage of this feature.
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Interaction of c.g. and length-scale effects

For a fixed h, the discrete Hessian,

∇2
Fh(ω) = T

1 +
4 sin2 h

ω

2
h2

 ≈ 1 + ω
2
,

amplifies the upper range of frequencies,

|ω | ≥
π

2h
,

more than the lower range,

|ω | ≤
π

2h
.

As in standard MG, in MG/Opt we switch to coarser grids (h ← H) and apply t.c.g. to

knock out the part of the solution that corresponds to the high-frequencies at that level of

discretization.

Earlier work Multigrid MG/Opt Reduced Hessians Dirichlet to Neumann map I
Advection TCG Generality? Dirichlet to Neumann map II Summary



V-cycles

We still need the V-cycle structure of standard MG—we need to do a few iterations of

t.c.g. on finer grids from time to time.

The reasons are similar to those in standard multigrid.

The fine-to-coarse grid operators IhH are not exact low-pass filters. Since we do not solve

the problem exactly on the finer grids, aliasing may occur when we assemble a coarser grid

problem.

Conversely, errors can arise when the coarse-grid solutions are injected into the finer grids.
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Is the ellipticity a fluke? Is it expected?

Or is it Egorov’s theorem?

Recall the structure of the (reduced) Hessian:

∇2
F = S

T
a S
−T
u LuuS

−1
u Sa + S

T
a S
−T
u Lua + LauS

−1
u Sa + Laa,

where L(a, u) = f(a, u) + 〈λ, S(a, u)〉.

In this problems (and many realistic problems) we have

∇2
F = S

T
a S
−T
u LuuS

−1
u Sa.

The linearized solution operator S−1
u enters via conjugation.

The Hessian frequently turns out to be an elliptic ΨDO, and there are only limited

frequency interactions.

Fourier analysis is less suitable for the more general setting.
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Model Problem: Dirichlet to Neumann map (again)

Minimize ∫ π

0

[
∂u

∂n
(x1, 0)− φ(x1)

]2

dx1

where S = { (x1, x2) | 0 ≤ x1 ≤ π, 0 ≤ x2 ≤ 1 }

Governing BVP:
∆u = 0 on the square S,

u
∣∣∣
Γ

= a(x1), Γ = lower edge of S

u
∣∣∣
∂S\Γ

= 0
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The analytical Hessian

If

v =

∞∑
k=1

vk sin kx1,

then

∇2F (a) · v =
∑∞

k=1(k
2 coth2 k) vk sin kx1 ≈ −

d2v

dx2
1

,

and the Hessian is an elliptic operator.

We would expect multigrid to do well (and CG to do poorly).
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The discrete Hessian

Standard five-point finite-difference scheme:

−um+1,n + 2um,n − um−1,n

h2
+
−um,n+1 + 2um,n − um,n−1

h2
= 0.

Grid size h in both the x1 and x2 directions with h = π/N .

If

v =
N∑
k=1

vk sin kmh,

then

(Hv)m =

N∑
k=1

σ
2
k vk sin kmh

where σ2
k still grows roughly like k2.
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Uniform grids (1-d in a and 2-d in u): 128, 64, 32, 16
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Summary

• Multigrid is applicable to optimization of systems governed by differential equation

constraints

• Can be successful even if the underlying p.d.e. are not elliptic

• Approach separates model, discretization, and optimization

• Structural features of the reduced Hessian lead us to believe multigrid will be widely

applicable

Earlier work Multigrid MG/Opt Reduced Hessians Dirichlet to Neumann map I
Advection TCG Generality? Dirichlet to Neumann map II Summary



Interpreting the reduced Hessian

The identity

∇2
F (a) = W

T
(
∇2

(a,u)L((a, u(a);λ)
)
W.

means

∇2
F (a)[η1, η2] = ∇2

(a,u)L((a, u(a);λ)[Wη1,Wη2].

Back to the reduced Hessian
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Successive Krylov vectors for the advection problem

Plot of the magnitudes of the FFTs
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Back to the advection Hessian
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The discrete Hessian for the Dirichlet to Neumann map

σ2
k versus wavenumber for h = 0.01
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Back to the Dirichlet to Neumann map
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